Skip to content Skip to sidebar Skip to footer

Momentum Impuls dan Tumbukan (Uji Prestasi Mandiri 4.2 Sagufindo Kinarya)


Soal Nomor 1

Sebuah bola jatuh bebas dari ketinggian 10 m di atas lantai. Jika koefisien restitusi antara bola dengan lantai 0,5, berapa tinggi pantulan bola tersebut?

Diketahui :
\(h\) = 10 m
e = 0,5

Ditanya :
\(h_2\) = ...?

Jawab :
\begin{aligned}
e &= \sqrt{\frac{h_2}{h_1}}\\
e^2 &= \frac{h_2}{h_1}\\
0,5^2 &= \frac{h_2}{10}\\
0,25 &= \frac{h_2}{10}\\
0,25 \times 10 &= h_2\\
2,5 \ m &= h_2\\
\end{aligned}

Soal Nomor 2

Sebuah bola jatuh dari ketinggian 50 m di atas lantai mendatar. Apabila koefisien tumbukan antara lantai dan bola 0,5. Hitunglah tinggi pantulan ke-3 yang dicapai bola!

Diketahui :
\(h_1\) = 50 m
e = 0,5

Ditanya :
\(h_4\) = ...?
 
Jawab :
\begin{aligned}
e^2 &= \frac{h_2}{h_1} \\ 0,5^2 &= \frac{h_2}{50}\\ 0,25 \times 50 &= h_2\\ 12,5 \ m &=\\ \\ e^2 &= \frac{h_3}{h_2}\\ 0,5^2 &= \frac{h_3}{12,5}\\ 0,25 \times 12,5 &= h_3\\ 3,125 \ m &=\\
\\  e^2 &= \frac{h_4}{h_3}\\
0,5^2 &= \frac{h_4}{3,125}\\
0,25 \times 3,125 &= h_4\\
0,78125 \ m &=\\
\end{aligned}

 

Soal Nomor 3

Dua benda A dan B massanya sama. Benda A bergerak dengan kecepatan v menumbuk benda B yang diam. Jika terjadi tumbukan lenting sempurna, berapa kecepatan benda B setelah tumbukan?

Diketahui :
\(m_A = m_B = m\)
\(v_A\) = v
\(v_B\) = 0 (diam)
Lenting sempurna

Ditanya :
\(v'_B\) = ...?

Jawab :
Cara cepat :
Jika massa kedua benda sama, dan teradi lenting sempurna, maka berlaku TUKAR KECEPATAN
\begin{aligned}
v_A &= v \\
v_B &= 0 \\
v'_A &= v_B = 0 \\
v'_B &= v_A = v \\
\end{aligned}

Cara kedua, menggunakan hukum kekekalan momentum dan kekekalan energi.
\begin{aligned}
(m_A \times v_A) + (m_B \times v_B) &= (m_A \times v'_A) + (m_B \times v'_B) \\
(m \times v) + (m \times 0) &= (m \times v'_A) + (m \times v'_B) \\
 v &= v'_A + v'_B \ ...(1) \\
\\
e &= \frac{-(v'_A-v'_B)}{v_A - v_B}\\
1 &= \frac{-(v'_A-v'_B)}{v - 0}\\
v &=-v'_A+v'_B \ ...(2)\\
\end{aligned}
Eliminasi persamaan 1 dan 2
 \[
   \frac
   {
       \!\begin{aligned}
               v &= v'_A + v'_B\\
               v &=-v'_A + v'_B
       \end{aligned}
   }
   {\!\begin{aligned}
  2 \ v &= 2 \ v'_B\\
  v &= v'_B
   \end{aligned}
   }
   \ +
\]



Baca Juga Bab 4 Momentum Impuls da Tumbukan


Soal Nomor 4

Benda A dan B massanya masing-masing 3 kg dan 2 kg. Benda A bergerak ke kanan dengan kecepatan 5 m/s dan B bergerak ke kiri dengan kecepatan 10 m/s sehingga kedua benda bertumbukan. Jika sesudah tumbukan kedua benda menjadi satu, maka kecepatan kedua benda sesaat sesudah tumbukan adalah....
A. 1 m/s ke kiri
B. 1 m/s ke kanan
C. 5 m/s ke kiri
D. 6 m/s ke kanan
E. 12 m/s ke kiri

Diketahui :
\(m_A\) = 3 kg
\(m_B\) = 2 kg
\(v_A\) = 5 m/s (ke kanan)
\(v_B\) = -10 m/s (ke kiri)

Ditanya :
\(v'\) = ...?

Jawab :
\begin{aligned}
(m_A \times v_A) + (m_B \times v_B) &= (m_A + m_B) \times v'\\
(3 \times 5) + (2 \times -10) &= (3+2) \times v'\\
15 + (-20) &= 5 \ v' \\
-5 &= 5 \ v' \\
\frac{-5}{5} &= v' \\
-1 &=
\end{aligned}

Jadi kecepatan kedua benda sesaat sesudah tumbukan adalah 1 m/s ke kiri (A)


Soal Nomor 5

Dua buah benda A dan B massanya sama. Mula-mula benda A bergerak ke kanan dengan kecepatan awal 5 m/s, setelah 2 sekon menempuh jarak sejauh 14 m. Pada saat itu benda A dan B bertumbukan tak lenting sama sekali. Jika B mula-mula ke kiri dengan kecepatan 15 m/s, maka kecepatan kedua benda setelah tumbukan adalah....
A. 3 m/s ke kiri
B. 3 m/s ke kanan
C. 6 m/s ke kiri
D. 6 m/s ke kanan
E. 12 m/s ke kiri

Diketahui :
\(m_A = m_B = m\)
\(v_{0A}\) = 5 m/s (ke kanan)
t = 2 s
s = 14 m
tumbukan tidak lenting sama sekali
\(v_B\) = -15 m/s (ke kiri)

Ditanya :
\(v'\) = ...?

Jawab :
Kecepatan benda A saat tumbukan
\begin{aligned}
s &= v_{0A} \ . \ t + \frac{1}{2}. a .t^2\\
14 &= 5.2 + \frac{1}{2}.a.2^2\\
14 &= 10 + 2a \\
2a &= 14 - 10 \\
a &= \frac{4}{2} \\
&= 2 \ m/s^2  \\
\\
v_A &= V_{0A} + a.t \\
&= 5 + 2.2 \\
&= 9 \ m/s \\
\end{aligned}

Kecepatan kedua benda setelah tumbukan
\begin{aligned}
(m_A \times v_A) + (m_B \times v_B) &= (m_A + m_B) \times v'\\
(m \times 9) + (m \times -15) &= (m + m) \times v'\\
9 \ m - 15 \ m &= 2m \ v'\\
-6 \ m &= 2m \ v'\\
v' &= \frac{-6m}{2m}\\
&= -3 \ m/s \ (ke \ kiri)
\end{aligned}

Jawaban : A


Soal Nomor 6

Dua buah benda massanya masing-masing m bergerak berlawanan arah. Kecepatan benda pertama 10 m/s dan benda kedua 5 m/s. Setelah tumbukan kedua benda menjadi satu. Kecepatan kedua benda setelah tumbukan adalah...
A. 2,5 m/s searah benda pertama
B. 2,5 m/s searah benda kedua
C. 5 m/s searah benda pertama
D. 5 m/s searah benda kedua
E. 10 m/s searah benda pertama.

Diketahui :
\(m_A = m_B = m\)
A dan B berlawanan arah
\(v_A\) = 10 m/s (ke kanan)
\(v_B\) = -5 m/s (ke kiri)

Ditanya :
\(v'\) = ...?
 
Jawab :
\begin{aligned}
(m_A \times v_A) + (m_B \times v_B) &= (m_A + m_B) \times v'\\
(m \times 10) + (m \times -5) &= (m + m) \times v'\\
10 \ m - 5 \ m &= 2m \ v'\\
5 \ m &= 2m \ v'\\
v' &= \frac{5m}{2m}\\
&= 2,5 \ m/s \ (ke \ kanan)
\end{aligned}

Jawaban : A

Post a Comment for "Momentum Impuls dan Tumbukan (Uji Prestasi Mandiri 4.2 Sagufindo Kinarya)"