Soal Latihan Energi dan Hukum Kekekalan Energi Mekanik
Soal Latihan Energi dan Hukum Kekekalan Energi Mekanik SK-20
Soal Latihan 3.5
Sebuah benda bermassa 4 kg, mula-mula diam kemudian bergerak lurus
dengan percepatan 3 \ m/s^2. Usaha yang diubah menjadi energi
kinetik setelah dua detik adalah....
A. 6 joule
B. 12 joule
C. 24 joule
D. 48 joule
E. 72 joule
Diketahui :m = 4 \ kg
v_0 = 0 \ (diam)
a = 3 \ m/s^2
t = 2 \ detik
Ditanya :
E_k setelah dua detik
Petunjuk :
Jawab : E Menghitung kecepatan benda setelah dua detik
\begin{aligned} v_t &= v_0 + a \cdot t \\ &= 0 + 3 \cdot 2 \\ &= 6 \ m/s \end{aligned}
Menghitung Energi Kinetik setelah 2 detik
\begin{aligned} E_k &= \frac{1}{2} \cdot m \cdot {v_t}^2 \\ &= \frac{1}{2} \cdot 4 \cdot 6^2 \\ &= 2 \cdot 36 \\ &= 72 \ Joule \end{aligned}
A. 6 joule
B. 12 joule
C. 24 joule
D. 48 joule
E. 72 joule
Diketahui :m = 4 \ kg
v_0 = 0 \ (diam)
a = 3 \ m/s^2
t = 2 \ detik
Ditanya :
E_k setelah dua detik
Petunjuk :
- Benda bergerak dengan percepatan tetap, sehingga benda mengalami peruabahan kecepatan. Benda mula-mula diam, kemudian bergerak dengan kecepatan tertentu.
- Besar kecepatan pada detik tertentu bisa dihitung menggunakan persamaan gerak lurus berubah beraturan (GLBB).
- Salah satu persamaan kecepatan pada gerak GLBB dipercepat adalah v_t = v_0 + a \cdot t.
- Karena adanya perubahan kecepatan, sehingga juga terjadi perubahan energi kinetik.
- Besar usaha yang diubah sama dengan besar perubahan energi kinetik yang dialami benda.
Jawab : E Menghitung kecepatan benda setelah dua detik
\begin{aligned} v_t &= v_0 + a \cdot t \\ &= 0 + 3 \cdot 2 \\ &= 6 \ m/s \end{aligned}
Menghitung Energi Kinetik setelah 2 detik
\begin{aligned} E_k &= \frac{1}{2} \cdot m \cdot {v_t}^2 \\ &= \frac{1}{2} \cdot 4 \cdot 6^2 \\ &= 2 \cdot 36 \\ &= 72 \ Joule \end{aligned}
Massa total mobil dan penumpangnya adalah 2 ton. Mobil yang mula-mula
diam kemudian dipercepat selama 7,5 sekon dengan percepatan 2 \
m/s^2. Jika jarak yang mereka tempuh sejauh 5 km, hitung gaya yang
dibutuhkan mesin mobil!
Diketahui :
m = 2 \ ton = 2.000 \ kg
v_0 = 0 \ (diam)
t = 7,5 \ sekon
a = 2 \ m/s^2
s = 5 \ km = 5.000 \ m
Ditanya :
F = ...?
Petunjuk :
Jawab :
Menghitung kecepatan pada detik ke 7,5
\begin{aligned} v_t &= v_0 + a \cdot t \\ &= 0 + 2 \cdot 7,5 \\ &= 15 \ m/s \end{aligned}
Menghitung gaya yang dibutuhkan mesin mobil
\begin{aligned} W &= \Delta E_k \\ F \cdot s &= \frac{1}{2} \cdot m \cdot ({v_t}^2 - {v_0}^2) \\ F \cdot 5.000 &= \frac{1}{2} \cdot 2000 \cdot (15^2-0) \\ 5000 \ F &= 1000 \cdot 225 \\ F &= \frac{225000}{5000} \\ &= 45 \ Newton \end{aligned}
Diketahui :
m = 2 \ ton = 2.000 \ kg
v_0 = 0 \ (diam)
t = 7,5 \ sekon
a = 2 \ m/s^2
s = 5 \ km = 5.000 \ m
Ditanya :
F = ...?
Petunjuk :
- Besaran massa memiliki satuan SI berupa kilogram. 1 ton = 1.000 kg.
- Saat mobil mula-mula diam, kemudian bergerak dengan percepatan tetap, maka mobil tersebut mengalami gerak lurus berubah beraturan dipercepat.
- Besar kecepatan mobil pada saat waktu tertentu dapat dihitung menggunakan persamaan GLBB dipercepat, yaitu v_t = v_0 + a.
- Adanya perubahan kecepatan tersebut mengakibatkan adanya perubahan energi kinetik yang besarnya sama dengan usaha yang dilakukan mobil.
- Usaha dapat dihitung dengan mengalikan gaya dengan besar perpindahannya.
- Besar perpindahan harus dalam satuan SI yaitu meter. 1 km = 1.000 meter
Jawab :
Menghitung kecepatan pada detik ke 7,5
\begin{aligned} v_t &= v_0 + a \cdot t \\ &= 0 + 2 \cdot 7,5 \\ &= 15 \ m/s \end{aligned}
Menghitung gaya yang dibutuhkan mesin mobil
\begin{aligned} W &= \Delta E_k \\ F \cdot s &= \frac{1}{2} \cdot m \cdot ({v_t}^2 - {v_0}^2) \\ F \cdot 5.000 &= \frac{1}{2} \cdot 2000 \cdot (15^2-0) \\ 5000 \ F &= 1000 \cdot 225 \\ F &= \frac{225000}{5000} \\ &= 45 \ Newton \end{aligned}
Soal Latihan 3.1 s.d 3.4
Uji Prestasi Mandiri 3.1
Soal Latihan 3.5 s.d 3.8
Soal Latihan 3.9 s.d 3.12
Uji Prestasi Mandiri 3.2
Soal Latihan 3.7
Sebuah benda massa 2 kg jatuh bebas dari kedudukan A (lihat gambar).
Tentukan energi kinetik benda ketika berada di B (g = 10 \ m/s^2)
dengan menggunakan hukum kekekalan energi mekanik.Diketahui :
m = 2 \ kg
h_A = 80 \ m
h_B = 10 \ m
g = 10 \ m/s^2
Ditanya :
Ek_{B} = ...?
Petunjuk :
Jawab :
\begin{aligned} E_{MA} &= E_{MB} \\ E_{pA} + E_{kA} &= E_{pB} + E_{kB} \\ \left(m \cdot g \cdot h_A \right) + \left(\frac{1}{2} \cdot m \cdot {v_A}^2 \right) &= \left(m \cdot g \cdot h_B \right) + E_{kB} \\ \left(2 \cdot 10 \cdot 80 \right) + \left(\frac{1}{2} \cdot 2 \cdot 0^2 \right) &= \left(2 \cdot 10 \cdot 10 \right) + E_{kB} \\ 1600 + 0 &= 200 + E_{kB} \\ E_{kB} &= 1600 - 200 \\ &= 1.400 \ Joule \end{aligned}
m = 2 \ kg
h_A = 80 \ m
h_B = 10 \ m
g = 10 \ m/s^2
Ditanya :
Ek_{B} = ...?
Petunjuk :
- Benda yang bergerak jatuh memiliki energi potensial (karena kedudukannya) dan energi kinetik (karena geraknya).
- Benda pada ketinggian tertentu mempunyai energi potensial yang besarnya dapat dirumuskan E_p = m \cdot g \cdot h.
- Benda mengalami perubahan ketinggian, sehingga juga mengalami perubahan energi potensial.
- Saat benda jatuh bebas, maka semakin ke bawah semakin besar kecepatannya. Hal ini menunjukkan energi kinetik benda juga berubah.
- Bila tidak ada gaya luar yang bekerja, maka jumlah energi potensial dan energi kinetik benda bernilai tetap. Hal ini dikenal dengan hukum kekekalan energi mekanik.
- Secara matematis, hukum kekekalan energi mekanik dapat dituliskan : E_{pA} + E_{kA} = E_{pB} + E_{kB}.
Jawab :
\begin{aligned} E_{MA} &= E_{MB} \\ E_{pA} + E_{kA} &= E_{pB} + E_{kB} \\ \left(m \cdot g \cdot h_A \right) + \left(\frac{1}{2} \cdot m \cdot {v_A}^2 \right) &= \left(m \cdot g \cdot h_B \right) + E_{kB} \\ \left(2 \cdot 10 \cdot 80 \right) + \left(\frac{1}{2} \cdot 2 \cdot 0^2 \right) &= \left(2 \cdot 10 \cdot 10 \right) + E_{kB} \\ 1600 + 0 &= 200 + E_{kB} \\ E_{kB} &= 1600 - 200 \\ &= 1.400 \ Joule \end{aligned}
Seorang anak bermassa 12 kg bermain seluncuran seperti tampak pada gambar berikut.Supaya
anak tidak jatuh langsung ke tanah, seluncuran diberikan lengkungan
pada ujungnya. Lengkungan tersebut berjari-jari 20 cm. Apabila
ketinggian seluncuran 2 m, kecepatan anak saat berada di titik C sebesar
....
A. 1 m/s
B. 4 m/s
C. 5 m/s
D. 6 m/s
E. 8 m/s
Diketahui :
m = 12 \ kg
v_A = 0 \ (mula-mula \ diam)
h_A = 2 \ m
h_C = 20 \ cm = 0,2 \ m
Ditanya :
v_C = ...?
Petunjuk :
Jawab : D
\begin{aligned} E_{MC} &= E_{MA} \\ E_{pC} + E_{kC} &= E_{pA} + E_{kA} \\ \left(m \cdot g \cdot h_C \right) + \left(\frac{1}{2} \cdot m \cdot {v_C}^2 \right) &= \left(m \cdot g \cdot h_A \right) + \left(\frac{1}{2} \cdot m \cdot {v_A}^2 \right) \\ \left(12 \cdot 10 \cdot 0,2 \right) + \left(\frac{1}{2} \cdot 12 \cdot {v_C}^2 \right) &= \left(12 \cdot 10 \cdot 2 \right) + \left(\frac{1}{2} \cdot 12 \cdot 0^2 \right) \\ 24 + 6 \ {v_C}^2 &= 240 + 0 \\ 6 \ {v_C}^2 &= 240 - 24 \\ &= 216 \\ {v_C}^2 &= \frac{216}{6} \\ &= 36 \\ v_C &= \sqrt{36} \\ &= 6 \ m/s \end{aligned}
A. 1 m/s
B. 4 m/s
C. 5 m/s
D. 6 m/s
E. 8 m/s
Diketahui :
m = 12 \ kg
v_A = 0 \ (mula-mula \ diam)
h_A = 2 \ m
h_C = 20 \ cm = 0,2 \ m
Ditanya :
v_C = ...?
Petunjuk :
- Pada posisi A dan C berlaku hukum kekekalan energi mekanik.
- Ketinggian benda diukur mulai dari dasar atau tanah. Pada kedudukan C, besar ketinggiannya sama dengan jari-jari lingkaran.
- Ketinggian harus dalam satuan SI yaitu meter.
- Pada posisi A, seorang anak dalam kondisi duduk terdiam sebelum meluncur, sehingga kecepatan pada posisi A sama dengan nol.
Jawab : D
\begin{aligned} E_{MC} &= E_{MA} \\ E_{pC} + E_{kC} &= E_{pA} + E_{kA} \\ \left(m \cdot g \cdot h_C \right) + \left(\frac{1}{2} \cdot m \cdot {v_C}^2 \right) &= \left(m \cdot g \cdot h_A \right) + \left(\frac{1}{2} \cdot m \cdot {v_A}^2 \right) \\ \left(12 \cdot 10 \cdot 0,2 \right) + \left(\frac{1}{2} \cdot 12 \cdot {v_C}^2 \right) &= \left(12 \cdot 10 \cdot 2 \right) + \left(\frac{1}{2} \cdot 12 \cdot 0^2 \right) \\ 24 + 6 \ {v_C}^2 &= 240 + 0 \\ 6 \ {v_C}^2 &= 240 - 24 \\ &= 216 \\ {v_C}^2 &= \frac{216}{6} \\ &= 36 \\ v_C &= \sqrt{36} \\ &= 6 \ m/s \end{aligned}
Post a Comment for "Soal Latihan Energi dan Hukum Kekekalan Energi Mekanik"