Pembahasan Uji Prestasi Mandiri 12.3 Sagufindo Kinarya
Soal Nomor 1
Soal Nomor 2
Baca Juga Pembahasan Soal Alat-alat Optik:
Soal Nomor 3
Sebuah mikroskop mempunyai lensa objektif dengan kekuatan 100 D dan
lensa okuler 25 D. Preparat diletakkan 1,1 cm di bawah lensa objektif.
Tentukanlah panjang dan perbesaran mikroskop untuk pengamatan :
a. Tanpa akomodasi
b. Akomodasi maksimum
c. Akomodasi pada jarak 50 cm
Diketahui :
P_{ob} = 100 D
P_{ok} = 25 D
s_{ob} = 1,1 cm = 11 mm
Ditanya :
a. d dan \gamma saat tanpa akomodasi
b. d dan \gamma saat akomodasi
c. d dan \gamma saat akomodasi pada jarak 50 cm
Jawab :
Besar jarak fokus lensa obyektif (f_{ob})
\begin{aligned} f_{ob} &= \frac{100}{P_{ob}} \nonumber\\ &= \frac{100}{100} \nonumber\\ &= 1 \ cm \ = \ 10 \ mm \nonumber \end{aligned}
Besar jarak fokus lensa okuler (f_{ok})
\begin{aligned} f_{ok} &= \frac{100}{P_{ok}} \nonumber\\ &= \frac{100}{25} \nonumber\\ &= 4 \ cm \nonumber \end{aligned}
Mencari besar bayangan dari lensa obyektif (s'_ob)
\begin{aligned} \frac{1}{f_{ob}} &= \frac{1}{s_{ob}} + \frac{1}{s'_{ob}} \nonumber\\ \frac{1}{s'_{ob}} &= \frac{1}{f_{ob}} - \frac{1}{s_{ob}} \nonumber\\ &= \frac{1}{10} - \frac{1}{11} \nonumber\\ &= \frac{11-10}{110} \nonumber\\ &= \frac{1}{110} \nonumber\\ s'_{ob} &= 110 \ mm \ = \ 11 \ cm \nonumber \end{aligned}
a. Tanpa akomodasi
\begin{aligned} d &= s'_{ob}+f_{ok} \nonumber\\ &= 11 + 4 \nonumber\\ &= 15 \ cm \nonumber\\ \\ \nonumber\\ \gamma &= \left (\frac{s'_{ob}}{s_{ob}}\right) \times \left(\frac{Sn}{f_{ok}}\right) \nonumber\\ &= \left (\frac{11 \ cm}{1,1 \ cm}\right) \times \left(\frac{25 \ cm}{4 \ cm}\right) \nonumber\\ &= 10 \times 6,25 \nonumber\\ &= 62,5 \ kali \nonumber\\ \end{aligned}
b. Akomodasi maksimum
Mencari jarak benda lensa okuler (s_{ok})
\begin{aligned} \frac{1}{f_{ok}} &= \frac{1}{s_{ok}} + \frac{1}{s'_{ok}} \nonumber\\ \frac{1}{s_{ok}} &= \frac{1}{f_{ok}} - \frac{1}{s'_{ok}} \nonumber\\ \frac{1}{s_{ok}} &= \frac{1}{f_{ok}} - \frac{1}{-Sn} \nonumber\\ &= \frac{1}{4} +\frac{1}{25} \nonumber\\ &= \frac{25+4}{100} \nonumber\\ &= \frac{29}{100} \nonumber\\ s_{ok} &= \frac{100}{29} = 3,45 \ cm \nonumber\\ \\ \nonumber\\ d &= s'_{ob}+s_{ok} \nonumber\\ &= 11 + 3,45 \nonumber\\ &= 14,45 \ cm \nonumber\\ \\ \nonumber\\ \gamma &= \left (\frac{s'_{ob}}{s_{ob}}\right) \times \left(\frac{Sn}{f_{ok}+1}\right) \nonumber\\ &= \left (\frac{11 \ cm}{1,1 \ cm}\right) \times \left(\frac{25 \ cm}{4 \ cm}+1\right) \nonumber\\ &= 10 \times 7,25 \nonumber\\ &= 72,5 \ kali \nonumber\\ \end{aligned}
c. Akomodasi pada jarak 50 cm (s'_{ok} = -50 cm)
Mencari jarak benda lensa okuler (s_{ok})
\begin{aligned} \frac{1}{f_{ok}} &= \frac{1}{s_{ok}} + \frac{1}{s'_{ok}} \nonumber\\ \frac{1}{s_{ok}} &= \frac{1}{f_{ok}} - \frac{1}{s'_{ok}} \nonumber\\ &= \frac{1}{4} -\frac{1}{-50} \nonumber\\ &= \frac{1}{4} +\frac{1}{50} \nonumber\\ &= \frac{25+2}{100} \nonumber\\ &= \frac{27}{100} \nonumber\\ s_{ok} &= \frac{100}{27} = 3,7 \ cm \nonumber\\ \\ \nonumber\\ d &= s'_{ob}+s_{ok} \nonumber\\ &= 11 + 3,7 \nonumber\\ &= 14,7 \ cm \nonumber\\ \\ \nonumber\\ \gamma &= \left (\frac{s'_{ob}}{s_{ob}}\right) \times \left(\frac{Sn}{s_{ok}}\right) \nonumber\\ &= \left (\frac{11 \ cm}{1,1 \ cm}\right) \times \left(\frac{25 \ cm}{3,7 \ cm}\right) \nonumber\\ &= 10 \times 6,76 \nonumber\\ &= 67,6 \ kali \nonumber\\ \end{aligned}
a. Tanpa akomodasi
b. Akomodasi maksimum
c. Akomodasi pada jarak 50 cm
Diketahui :
P_{ob} = 100 D
P_{ok} = 25 D
s_{ob} = 1,1 cm = 11 mm
Ditanya :
a. d dan \gamma saat tanpa akomodasi
b. d dan \gamma saat akomodasi
c. d dan \gamma saat akomodasi pada jarak 50 cm
Jawab :
Besar jarak fokus lensa obyektif (f_{ob})
\begin{aligned} f_{ob} &= \frac{100}{P_{ob}} \nonumber\\ &= \frac{100}{100} \nonumber\\ &= 1 \ cm \ = \ 10 \ mm \nonumber \end{aligned}
Besar jarak fokus lensa okuler (f_{ok})
\begin{aligned} f_{ok} &= \frac{100}{P_{ok}} \nonumber\\ &= \frac{100}{25} \nonumber\\ &= 4 \ cm \nonumber \end{aligned}
Mencari besar bayangan dari lensa obyektif (s'_ob)
\begin{aligned} \frac{1}{f_{ob}} &= \frac{1}{s_{ob}} + \frac{1}{s'_{ob}} \nonumber\\ \frac{1}{s'_{ob}} &= \frac{1}{f_{ob}} - \frac{1}{s_{ob}} \nonumber\\ &= \frac{1}{10} - \frac{1}{11} \nonumber\\ &= \frac{11-10}{110} \nonumber\\ &= \frac{1}{110} \nonumber\\ s'_{ob} &= 110 \ mm \ = \ 11 \ cm \nonumber \end{aligned}
a. Tanpa akomodasi
\begin{aligned} d &= s'_{ob}+f_{ok} \nonumber\\ &= 11 + 4 \nonumber\\ &= 15 \ cm \nonumber\\ \\ \nonumber\\ \gamma &= \left (\frac{s'_{ob}}{s_{ob}}\right) \times \left(\frac{Sn}{f_{ok}}\right) \nonumber\\ &= \left (\frac{11 \ cm}{1,1 \ cm}\right) \times \left(\frac{25 \ cm}{4 \ cm}\right) \nonumber\\ &= 10 \times 6,25 \nonumber\\ &= 62,5 \ kali \nonumber\\ \end{aligned}
b. Akomodasi maksimum
Mencari jarak benda lensa okuler (s_{ok})
\begin{aligned} \frac{1}{f_{ok}} &= \frac{1}{s_{ok}} + \frac{1}{s'_{ok}} \nonumber\\ \frac{1}{s_{ok}} &= \frac{1}{f_{ok}} - \frac{1}{s'_{ok}} \nonumber\\ \frac{1}{s_{ok}} &= \frac{1}{f_{ok}} - \frac{1}{-Sn} \nonumber\\ &= \frac{1}{4} +\frac{1}{25} \nonumber\\ &= \frac{25+4}{100} \nonumber\\ &= \frac{29}{100} \nonumber\\ s_{ok} &= \frac{100}{29} = 3,45 \ cm \nonumber\\ \\ \nonumber\\ d &= s'_{ob}+s_{ok} \nonumber\\ &= 11 + 3,45 \nonumber\\ &= 14,45 \ cm \nonumber\\ \\ \nonumber\\ \gamma &= \left (\frac{s'_{ob}}{s_{ob}}\right) \times \left(\frac{Sn}{f_{ok}+1}\right) \nonumber\\ &= \left (\frac{11 \ cm}{1,1 \ cm}\right) \times \left(\frac{25 \ cm}{4 \ cm}+1\right) \nonumber\\ &= 10 \times 7,25 \nonumber\\ &= 72,5 \ kali \nonumber\\ \end{aligned}
c. Akomodasi pada jarak 50 cm (s'_{ok} = -50 cm)
Mencari jarak benda lensa okuler (s_{ok})
\begin{aligned} \frac{1}{f_{ok}} &= \frac{1}{s_{ok}} + \frac{1}{s'_{ok}} \nonumber\\ \frac{1}{s_{ok}} &= \frac{1}{f_{ok}} - \frac{1}{s'_{ok}} \nonumber\\ &= \frac{1}{4} -\frac{1}{-50} \nonumber\\ &= \frac{1}{4} +\frac{1}{50} \nonumber\\ &= \frac{25+2}{100} \nonumber\\ &= \frac{27}{100} \nonumber\\ s_{ok} &= \frac{100}{27} = 3,7 \ cm \nonumber\\ \\ \nonumber\\ d &= s'_{ob}+s_{ok} \nonumber\\ &= 11 + 3,7 \nonumber\\ &= 14,7 \ cm \nonumber\\ \\ \nonumber\\ \gamma &= \left (\frac{s'_{ob}}{s_{ob}}\right) \times \left(\frac{Sn}{s_{ok}}\right) \nonumber\\ &= \left (\frac{11 \ cm}{1,1 \ cm}\right) \times \left(\frac{25 \ cm}{3,7 \ cm}\right) \nonumber\\ &= 10 \times 6,76 \nonumber\\ &= 67,6 \ kali \nonumber\\ \end{aligned}
Soal Nomor 2
Sebuah mikroskop memiliki jarak fokus okuler 2,5 cm dan jarak fokus
lensa obyektif 0,9 cm. Mikroskop ini digunakan oleh orang bermata normal
(Sn = 25 cm) tanpa akomodasi. Berapa perbesaran mikroskop jika benda
diletakkan 1,0 cm di depan lensa obyektif?
Diketahui :
f_{ok} = 2,5 cm
f_{ob} = 0,9 cm = 9 mm
Sn = 25 cm
tanpa akomodasi
s_{ob} = 1,0 cm = 10 mm
Ditanya :
\gamma = ...?
Jawab :
Mencari jarak bayangan pada lensa obyektif (s'_{ob})
\begin{aligned} \frac{1}{f_{ob}} &= \frac{1}{s_{ob}} + \frac{1}{s'_{ob}} \nonumber\\ \frac{1}{s'_{ob}} &= \frac{1}{f_{ob}} - \frac{1}{s_{ob}} \nonumber\\ &= \frac{1}{9} - \frac{1}{10} \nonumber\\ &= \frac{10-9}{90} \nonumber\\ &= \frac{1}{90} \nonumber\\ s'_{ob} &= 90 \ mm \ = \ 9 \ cm \nonumber\\ \end{aligned}
Perbesaran mikroskop tanpa akomodasi
\begin{aligned} \gamma &= \left (\frac{s'_{ob}}{s_{ob}}\right) \times \left(\frac{Sn}{f_{ok}}\right) \nonumber\\ &= \left (\frac{9 \ cm}{1 \ cm}\right) \times \left(\frac{25 \ cm}{2,5 \ cm}\right) \nonumber\\ &= 9 \times 10 \nonumber\\ &= 90 \ kali \nonumber\\ \end{aligned}
Diketahui :
f_{ok} = 2,5 cm
f_{ob} = 0,9 cm = 9 mm
Sn = 25 cm
tanpa akomodasi
s_{ob} = 1,0 cm = 10 mm
Ditanya :
\gamma = ...?
Jawab :
Mencari jarak bayangan pada lensa obyektif (s'_{ob})
\begin{aligned} \frac{1}{f_{ob}} &= \frac{1}{s_{ob}} + \frac{1}{s'_{ob}} \nonumber\\ \frac{1}{s'_{ob}} &= \frac{1}{f_{ob}} - \frac{1}{s_{ob}} \nonumber\\ &= \frac{1}{9} - \frac{1}{10} \nonumber\\ &= \frac{10-9}{90} \nonumber\\ &= \frac{1}{90} \nonumber\\ s'_{ob} &= 90 \ mm \ = \ 9 \ cm \nonumber\\ \end{aligned}
Perbesaran mikroskop tanpa akomodasi
\begin{aligned} \gamma &= \left (\frac{s'_{ob}}{s_{ob}}\right) \times \left(\frac{Sn}{f_{ok}}\right) \nonumber\\ &= \left (\frac{9 \ cm}{1 \ cm}\right) \times \left(\frac{25 \ cm}{2,5 \ cm}\right) \nonumber\\ &= 9 \times 10 \nonumber\\ &= 90 \ kali \nonumber\\ \end{aligned}
Baca Juga Pembahasan Soal Alat-alat Optik:
Soal Latihan 12.1
Soal Latihan 12.2
Uji Prestasi Mandiri 12.1
Soal Latihan 12.3
Uji Prestasi Mandiri 12.2
Soal Latihan 12.4
Uji Prestasi Mandiri 12.3
Soal Latihan 12.5
Uji Prestasi Mandiri 12.4
Soal Latihan 12.6
Soal Latihan 12.2
Uji Prestasi Mandiri 12.1
Soal Latihan 12.3
Uji Prestasi Mandiri 12.2
Soal Latihan 12.4
Uji Prestasi Mandiri 12.3
Soal Latihan 12.5
Uji Prestasi Mandiri 12.4
Soal Latihan 12.6
Soal Nomor 3
Sebuah mikroskop mempunyai lensa objektif (P_{ob} = 12 D) dan lensa
okuler (P_{ok} = 30 D yang terpisah sejauh 25 cm. Hitunglah
perbesaran mikroskop untuk :
a. Mata berakomodasi maksimum
b. mata tidak berakomodasi
Diketahui :
P_{ob} = 12 D
P_{ok} = 30 D
d = 25 cm
Ditanya :
a. \gamma_{a} = ...?
b. \gamma_{ta} = ...?
Jawab :
Besar jarak fokus lensa obyektif (f_{ob})
\begin{aligned} f_{ob} &= \frac{100}{P_{ob}} \nonumber\\ &= \frac{100}{12} \nonumber\\ &= \frac{25}{3} \ cm \nonumber\\ \end{aligned}
Besar jarak fokus lensa okuler (f_{ok})
\begin{aligned} f_{ok} &= \frac{100}{P_{ok}} \nonumber\\ &= \frac{100}{30} \nonumber\\ &= \frac {10}{3} \ cm \ = \ 3,33 \ cm \nonumber\\ \end{aligned}
a. Perbesaran saat mata berakomodasi maksimum
\begin{aligned} d &= s'_{ob}+s_{ok} \nonumber\\ d &= s'_{ob}+(-PP) \nonumber\\ 25 &= s'_{ob} - 25 \nonumber\\ s'_{ob} &= 50 \ cm \nonumber\\ \\ \nonumber\\ \frac{1}{f_{ob}} &= \frac{1}{s_{ob}} + \frac{1}{s'_{ob}} \nonumber\\ \frac{1}{s_{ob}} &= \frac{1}{f_{ob}} - \frac{1}{s'_{ob}} \nonumber\\ &= \frac{1}{\frac{25}{3}} -\frac{1}{50} \nonumber\\ &= \frac{3}{25} - \frac{1}{50} \nonumber\\ &= \frac{(3 \times 4)-2}{100} \nonumber\\ &= \frac{12-2}{100} \nonumber\\ &= \frac{10}{100} \nonumber\\ s_{ob} &= \frac{100}{10} = 10 \ cm \nonumber\\ \\ \nonumber\\ \gamma &= \left (\frac{s'_{ob}}{s_{ob}}\right) \times \left(\frac{Sn}{f_{ok}+1}\right) \nonumber\\ &= \left (\frac{50 \ cm}{10 \ cm}\right) \times \left(\frac{25 \ cm}{\frac{10}{3} \ cm}+1\right) \nonumber\\ &= \left (\frac{50 \ cm}{10 \ cm}\right) \times \left(25 \times \frac{3}{10} +1\right) \nonumber\\ &= 2 \times 8,5 \nonumber\\ &= 17 \ kali \nonumber\\ \end{aligned}
b. Perbesaran saat mata tidak berakomodasi
\begin{aligned} d &= s'_{ob}+f_{ok} \nonumber\\ 25&= s'_{ob} + \frac{10}{3} \nonumber\\ s'_{ob} &= 25 - \frac{10}{3} \nonumber\\ &= \frac{65}{3} \ cm \nonumber\\ &= 21,67 \ cm \nonumber\\ \\ \nonumber\\ \frac{1}{f_{ob}} &= \frac{1}{s_{ob}} + \frac{1}{s'_{ob}} \nonumber\\ \frac{1}{s_{ob}} &= \frac{1}{f_{ob}} - \frac{1}{s'_{ob}} \nonumber\\ &= \frac{1}{\frac{25}{3}} -\frac{1}{\frac{65}{3}} \nonumber\\ &= \frac{3}{25} - \frac{3}{65} \nonumber\\ &= \frac{24}{325} \nonumber\\ s_{ob} &= \frac{325}{24} = 13,54 \ cm \nonumber\\ \\ \nonumber\\ \gamma &= \left (\frac{s'_{ob}}{s_{ob}}\right) \times \left(\frac{Sn}{f_{ok}}\right) \nonumber\\ &= \left (\frac{21,67 \ cm}{13,54 \ cm}\right) \times \left(\frac{25 \ cm}{3,33 \ cm}\right) \nonumber\\ &= 1,6 \times 7,5 \nonumber\\ &= 12 \ kali \nonumber\\ \end{aligned}
a. Mata berakomodasi maksimum
b. mata tidak berakomodasi
Diketahui :
P_{ob} = 12 D
P_{ok} = 30 D
d = 25 cm
Ditanya :
a. \gamma_{a} = ...?
b. \gamma_{ta} = ...?
Jawab :
Besar jarak fokus lensa obyektif (f_{ob})
\begin{aligned} f_{ob} &= \frac{100}{P_{ob}} \nonumber\\ &= \frac{100}{12} \nonumber\\ &= \frac{25}{3} \ cm \nonumber\\ \end{aligned}
Besar jarak fokus lensa okuler (f_{ok})
\begin{aligned} f_{ok} &= \frac{100}{P_{ok}} \nonumber\\ &= \frac{100}{30} \nonumber\\ &= \frac {10}{3} \ cm \ = \ 3,33 \ cm \nonumber\\ \end{aligned}
a. Perbesaran saat mata berakomodasi maksimum
\begin{aligned} d &= s'_{ob}+s_{ok} \nonumber\\ d &= s'_{ob}+(-PP) \nonumber\\ 25 &= s'_{ob} - 25 \nonumber\\ s'_{ob} &= 50 \ cm \nonumber\\ \\ \nonumber\\ \frac{1}{f_{ob}} &= \frac{1}{s_{ob}} + \frac{1}{s'_{ob}} \nonumber\\ \frac{1}{s_{ob}} &= \frac{1}{f_{ob}} - \frac{1}{s'_{ob}} \nonumber\\ &= \frac{1}{\frac{25}{3}} -\frac{1}{50} \nonumber\\ &= \frac{3}{25} - \frac{1}{50} \nonumber\\ &= \frac{(3 \times 4)-2}{100} \nonumber\\ &= \frac{12-2}{100} \nonumber\\ &= \frac{10}{100} \nonumber\\ s_{ob} &= \frac{100}{10} = 10 \ cm \nonumber\\ \\ \nonumber\\ \gamma &= \left (\frac{s'_{ob}}{s_{ob}}\right) \times \left(\frac{Sn}{f_{ok}+1}\right) \nonumber\\ &= \left (\frac{50 \ cm}{10 \ cm}\right) \times \left(\frac{25 \ cm}{\frac{10}{3} \ cm}+1\right) \nonumber\\ &= \left (\frac{50 \ cm}{10 \ cm}\right) \times \left(25 \times \frac{3}{10} +1\right) \nonumber\\ &= 2 \times 8,5 \nonumber\\ &= 17 \ kali \nonumber\\ \end{aligned}
b. Perbesaran saat mata tidak berakomodasi
\begin{aligned} d &= s'_{ob}+f_{ok} \nonumber\\ 25&= s'_{ob} + \frac{10}{3} \nonumber\\ s'_{ob} &= 25 - \frac{10}{3} \nonumber\\ &= \frac{65}{3} \ cm \nonumber\\ &= 21,67 \ cm \nonumber\\ \\ \nonumber\\ \frac{1}{f_{ob}} &= \frac{1}{s_{ob}} + \frac{1}{s'_{ob}} \nonumber\\ \frac{1}{s_{ob}} &= \frac{1}{f_{ob}} - \frac{1}{s'_{ob}} \nonumber\\ &= \frac{1}{\frac{25}{3}} -\frac{1}{\frac{65}{3}} \nonumber\\ &= \frac{3}{25} - \frac{3}{65} \nonumber\\ &= \frac{24}{325} \nonumber\\ s_{ob} &= \frac{325}{24} = 13,54 \ cm \nonumber\\ \\ \nonumber\\ \gamma &= \left (\frac{s'_{ob}}{s_{ob}}\right) \times \left(\frac{Sn}{f_{ok}}\right) \nonumber\\ &= \left (\frac{21,67 \ cm}{13,54 \ cm}\right) \times \left(\frac{25 \ cm}{3,33 \ cm}\right) \nonumber\\ &= 1,6 \times 7,5 \nonumber\\ &= 12 \ kali \nonumber\\ \end{aligned}
Post a Comment for "Pembahasan Uji Prestasi Mandiri 12.3 Sagufindo Kinarya"