Processing math: 100%
Skip to content Skip to sidebar Skip to footer

Pembahasan Uji Prestasi Mandiri 12.3 Sagufindo Kinarya

Soal Nomor 1

Sebuah mikroskop mempunyai lensa objektif dengan kekuatan 100 D dan lensa okuler 25 D. Preparat diletakkan 1,1 cm di bawah lensa objektif. Tentukanlah panjang dan perbesaran mikroskop untuk pengamatan :
a. Tanpa akomodasi
b. Akomodasi maksimum
c. Akomodasi pada jarak 50 cm

Diketahui :
P_{ob} = 100 D
P_{ok} = 25 D
s_{ob} = 1,1 cm = 11 mm

Ditanya :
a. d dan \gamma saat tanpa akomodasi
b. d dan \gamma saat akomodasi
c. d dan \gamma saat akomodasi pada jarak 50 cm

Jawab :
Besar jarak fokus lensa obyektif (f_{ob})
\begin{aligned} f_{ob} &= \frac{100}{P_{ob}} \nonumber\\ &= \frac{100}{100} \nonumber\\ &= 1 \ cm \ = \ 10 \ mm \nonumber \end{aligned}

Besar jarak fokus lensa okuler (f_{ok})
\begin{aligned} f_{ok} &= \frac{100}{P_{ok}} \nonumber\\ &= \frac{100}{25} \nonumber\\ &= 4 \ cm \nonumber \end{aligned}

Mencari besar bayangan dari lensa obyektif (s'_ob)
\begin{aligned} \frac{1}{f_{ob}} &= \frac{1}{s_{ob}} + \frac{1}{s'_{ob}} \nonumber\\ \frac{1}{s'_{ob}} &= \frac{1}{f_{ob}} - \frac{1}{s_{ob}} \nonumber\\ &= \frac{1}{10} - \frac{1}{11} \nonumber\\ &= \frac{11-10}{110} \nonumber\\ &= \frac{1}{110} \nonumber\\ s'_{ob} &= 110 \ mm \ = \ 11 \ cm \nonumber \end{aligned}

a. Tanpa akomodasi
\begin{aligned} d &= s'_{ob}+f_{ok} \nonumber\\ &= 11 + 4 \nonumber\\ &= 15 \ cm \nonumber\\ \\ \nonumber\\ \gamma &= \left (\frac{s'_{ob}}{s_{ob}}\right) \times \left(\frac{Sn}{f_{ok}}\right) \nonumber\\ &= \left (\frac{11 \ cm}{1,1 \ cm}\right) \times \left(\frac{25 \ cm}{4 \ cm}\right) \nonumber\\ &= 10 \times 6,25 \nonumber\\ &= 62,5 \ kali \nonumber\\ \end{aligned}

b. Akomodasi maksimum
    Mencari jarak benda lensa okuler (s_{ok})
\begin{aligned} \frac{1}{f_{ok}} &= \frac{1}{s_{ok}} + \frac{1}{s'_{ok}} \nonumber\\ \frac{1}{s_{ok}} &= \frac{1}{f_{ok}} - \frac{1}{s'_{ok}} \nonumber\\ \frac{1}{s_{ok}} &= \frac{1}{f_{ok}} - \frac{1}{-Sn} \nonumber\\ &= \frac{1}{4} +\frac{1}{25} \nonumber\\ &= \frac{25+4}{100} \nonumber\\ &= \frac{29}{100} \nonumber\\ s_{ok} &= \frac{100}{29} = 3,45 \ cm \nonumber\\ \\ \nonumber\\ d &= s'_{ob}+s_{ok} \nonumber\\ &= 11 + 3,45 \nonumber\\ &= 14,45 \ cm \nonumber\\ \\ \nonumber\\ \gamma &= \left (\frac{s'_{ob}}{s_{ob}}\right) \times \left(\frac{Sn}{f_{ok}+1}\right) \nonumber\\ &= \left (\frac{11 \ cm}{1,1 \ cm}\right) \times \left(\frac{25 \ cm}{4 \ cm}+1\right) \nonumber\\ &= 10 \times 7,25 \nonumber\\ &= 72,5 \ kali \nonumber\\ \end{aligned}

c. Akomodasi pada jarak 50 cm (s'_{ok} = -50 cm)
    Mencari jarak benda lensa okuler (s_{ok})
\begin{aligned} \frac{1}{f_{ok}} &= \frac{1}{s_{ok}} + \frac{1}{s'_{ok}} \nonumber\\ \frac{1}{s_{ok}} &= \frac{1}{f_{ok}} - \frac{1}{s'_{ok}} \nonumber\\ &= \frac{1}{4} -\frac{1}{-50} \nonumber\\ &= \frac{1}{4} +\frac{1}{50} \nonumber\\ &= \frac{25+2}{100} \nonumber\\ &= \frac{27}{100} \nonumber\\ s_{ok} &= \frac{100}{27} = 3,7 \ cm \nonumber\\ \\ \nonumber\\ d &= s'_{ob}+s_{ok} \nonumber\\ &= 11 + 3,7 \nonumber\\ &= 14,7 \ cm \nonumber\\ \\ \nonumber\\ \gamma &= \left (\frac{s'_{ob}}{s_{ob}}\right) \times \left(\frac{Sn}{s_{ok}}\right) \nonumber\\ &= \left (\frac{11 \ cm}{1,1 \ cm}\right) \times \left(\frac{25 \ cm}{3,7 \ cm}\right) \nonumber\\ &= 10 \times 6,76 \nonumber\\ &= 67,6 \ kali \nonumber\\ \end{aligned}


Soal Nomor 2
Sebuah mikroskop memiliki jarak fokus okuler 2,5 cm dan jarak fokus lensa obyektif 0,9 cm. Mikroskop ini digunakan oleh orang bermata normal (Sn = 25 cm) tanpa akomodasi. Berapa perbesaran mikroskop jika benda diletakkan 1,0 cm di depan lensa obyektif?

Diketahui :
f_{ok} = 2,5 cm
f_{ob} = 0,9 cm = 9 mm
Sn = 25 cm
tanpa akomodasi
s_{ob} = 1,0 cm = 10 mm

Ditanya :
\gamma = ...?

Jawab :
Mencari jarak bayangan pada lensa obyektif (s'_{ob})
\begin{aligned} \frac{1}{f_{ob}} &= \frac{1}{s_{ob}} + \frac{1}{s'_{ob}} \nonumber\\ \frac{1}{s'_{ob}} &= \frac{1}{f_{ob}} - \frac{1}{s_{ob}} \nonumber\\ &= \frac{1}{9} - \frac{1}{10} \nonumber\\ &= \frac{10-9}{90} \nonumber\\ &= \frac{1}{90} \nonumber\\ s'_{ob} &= 90 \ mm \ = \ 9 \ cm \nonumber\\ \end{aligned}

Perbesaran mikroskop tanpa akomodasi
\begin{aligned} \gamma &= \left (\frac{s'_{ob}}{s_{ob}}\right) \times \left(\frac{Sn}{f_{ok}}\right) \nonumber\\ &= \left (\frac{9 \ cm}{1 \ cm}\right) \times \left(\frac{25 \ cm}{2,5 \ cm}\right) \nonumber\\ &= 9 \times 10 \nonumber\\ &= 90 \ kali \nonumber\\ \end{aligned}


Baca Juga Pembahasan Soal Alat-alat Optik:


Soal Nomor 3
Sebuah mikroskop mempunyai lensa objektif (P_{ob} = 12 D) dan lensa okuler (P_{ok} = 30 D yang terpisah sejauh 25 cm. Hitunglah perbesaran mikroskop untuk :
a. Mata berakomodasi maksimum
b. mata tidak berakomodasi

Diketahui :
P_{ob} = 12 D
P_{ok} = 30 D
d = 25 cm

Ditanya :
a. \gamma_{a} = ...?
b. \gamma_{ta} = ...?

Jawab :
Besar jarak fokus lensa obyektif (f_{ob})
\begin{aligned} f_{ob} &= \frac{100}{P_{ob}} \nonumber\\ &= \frac{100}{12} \nonumber\\ &= \frac{25}{3} \ cm  \nonumber\\ \end{aligned}

Besar jarak fokus lensa okuler (f_{ok})
\begin{aligned} f_{ok} &= \frac{100}{P_{ok}} \nonumber\\ &= \frac{100}{30} \nonumber\\ &= \frac {10}{3} \ cm \ = \ 3,33 \ cm \nonumber\\ \end{aligned}

a. Perbesaran saat mata berakomodasi maksimum
\begin{aligned} d &= s'_{ob}+s_{ok} \nonumber\\ d &= s'_{ob}+(-PP) \nonumber\\ 25 &= s'_{ob} - 25 \nonumber\\ s'_{ob} &= 50 \ cm \nonumber\\ \\ \nonumber\\ \frac{1}{f_{ob}} &= \frac{1}{s_{ob}} + \frac{1}{s'_{ob}} \nonumber\\ \frac{1}{s_{ob}} &= \frac{1}{f_{ob}} - \frac{1}{s'_{ob}} \nonumber\\ &= \frac{1}{\frac{25}{3}} -\frac{1}{50} \nonumber\\ &= \frac{3}{25} - \frac{1}{50} \nonumber\\ &= \frac{(3 \times 4)-2}{100} \nonumber\\ &= \frac{12-2}{100} \nonumber\\ &= \frac{10}{100} \nonumber\\ s_{ob} &= \frac{100}{10} = 10 \ cm \nonumber\\ \\ \nonumber\\ \gamma &= \left (\frac{s'_{ob}}{s_{ob}}\right) \times \left(\frac{Sn}{f_{ok}+1}\right) \nonumber\\ &= \left (\frac{50 \ cm}{10 \ cm}\right) \times \left(\frac{25 \ cm}{\frac{10}{3} \ cm}+1\right) \nonumber\\ &= \left (\frac{50 \ cm}{10 \ cm}\right) \times \left(25 \times \frac{3}{10} +1\right) \nonumber\\ &= 2 \times 8,5 \nonumber\\ &= 17 \ kali \nonumber\\ \end{aligned}
 
b. Perbesaran saat mata tidak berakomodasi
\begin{aligned} d &= s'_{ob}+f_{ok} \nonumber\\ 25&= s'_{ob} + \frac{10}{3} \nonumber\\ s'_{ob} &= 25 - \frac{10}{3} \nonumber\\ &= \frac{65}{3} \ cm \nonumber\\ &= 21,67 \ cm \nonumber\\ \\ \nonumber\\ \frac{1}{f_{ob}} &= \frac{1}{s_{ob}} + \frac{1}{s'_{ob}} \nonumber\\ \frac{1}{s_{ob}} &= \frac{1}{f_{ob}} - \frac{1}{s'_{ob}} \nonumber\\ &= \frac{1}{\frac{25}{3}} -\frac{1}{\frac{65}{3}} \nonumber\\ &= \frac{3}{25} - \frac{3}{65} \nonumber\\ &= \frac{24}{325} \nonumber\\ s_{ob} &= \frac{325}{24} = 13,54 \ cm \nonumber\\ \\ \nonumber\\ \gamma &= \left (\frac{s'_{ob}}{s_{ob}}\right) \times \left(\frac{Sn}{f_{ok}}\right) \nonumber\\ &= \left (\frac{21,67 \ cm}{13,54 \ cm}\right) \times \left(\frac{25 \ cm}{3,33 \ cm}\right) \nonumber\\ &= 1,6 \times 7,5 \nonumber\\ &= 12 \ kali \nonumber\\ \end{aligned}

Post a Comment for "Pembahasan Uji Prestasi Mandiri 12.3 Sagufindo Kinarya"